Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Lancet Respir Med ; 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2235799

ABSTRACT

BACKGROUND: Interstitial lung disease is a known complication of rheumatoid arthritis, with a lifetime risk of developing the disease in any individual of 7·7%. We aimed to assess the safety, tolerability, and efficacy of pirfenidone for the treatment of patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD). METHODS: TRAIL1 was a randomised, double-blind, placebo-controlled, phase 2 trial done in 34 academic centres specialising in interstitial lung disease in four countries (the UK, the USA, Australia, and Canada). Adults aged 18-85 years were eligible for inclusion if they met the 2010 American College of Rheumatology and European Alliance of Associations for Rheumatology criteria for rheumatoid arthritis and had interstitial lung disease on a high-resolution CT scan imaging and, when available, lung biopsy. Exclusion criteria include smoking, clinical history of other known causes of interstitial lung disease, and coexistant clinically significant COPD or asthma. Patients were randomly assigned (1:1) to receive 2403 mg oral pirfenidone (pirfenidone group) or placebo (placebo group) daily. The primary endpoint was the incidence of the composite endpoint of a decline from baseline in percent predicted forced vital capacity (FVC%) of 10% or more or death during the 52-week treatment period assessed in the intention-to-treat population. Key secondary endpoints included change in absolute and FVC% over 52 weeks, the proportion of patients with a decline in FVC% of 10% or more, and the frequency of progression as defined by Outcome Measures in Rheumatoid Arthritis Clinical Trials (OMERACT) in the intention-to-treat population. This study is registered with ClinicalTrials.gov, NCT02808871. FINDINGS: From May 15, 2017, to March 31, 2020, 231 patients were assessed for inclusion, of whom 123 patients were randomly assigned (63 [51%] to the pirfenidone group and 60 [49%] to the placebo group). The trial was stopped early (March 31, 2020) due to slow recruitment and the COVID-19 pandemic. The difference in the proportion of patients who met the composite primary endpoint (decline in FVC% from baseline of 10% or more or death) between the two groups was not significant (seven [11%] of 63 patients in the pirfenidone group vs nine [15%] of 60 patients in the placebo group; OR 0·67 [95% CI 0·22 to 2·03]; p=0·48). Compared with the placebo group, patients in the pirfenidone group had a slower rate of decline in lung function, measured by estimated annual change in absolute FVC (-66 vs -146; p=0·0082) and FVC% (-1·02 vs -3·21; p=0·0028). The groups were similar with regards to the decline in FVC% by 10% or more (five [8%] participants in the pirfenidone group vs seven [12%] in the placebo group; OR 0·52 [95% CI 0·14-1·90]; p=0·32) and the frequency of progression as defined by OMERACT (16 [25%] in the pirfenidone group vs 19 [32%] in the placebo group; OR 0·68 [0·30-1·54]; p=0·35). There was no significant difference in the rate of treatment-emergent serious adverse events between the two groups, and there were no treatment-related deaths. INTERPRETATION: Due to early termination of the study and underpowering, the results should be interpreted with caution. Despite not meeting the composite primary endpoint, pirfenidone slowed the rate of decline of FVC over time in patients with RA-ILD. Safety in patients with RA-ILD was similar to that seen in other pirfenidone trials. FUNDING: Genentech.

2.
BMJ Open Respir Res ; 8(1)2021 09.
Article in English | MEDLINE | ID: covidwho-1438096

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has led to over 100 million cases worldwide. The UK has had over 4 million cases, 400 000 hospital admissions and 100 000 deaths. Many patients with COVID-19 suffer long-term symptoms, predominantly breathlessness and fatigue whether hospitalised or not. Early data suggest potentially severe long-term consequence of COVID-19 is development of long COVID-19-related interstitial lung disease (LC-ILD). METHODS AND ANALYSIS: The UK Interstitial Lung Disease Consortium (UKILD) will undertake longitudinal observational studies of patients with suspected ILD following COVID-19. The primary objective is to determine ILD prevalence at 12 months following infection and whether clinically severe infection correlates with severity of ILD. Secondary objectives will determine the clinical, genetic, epigenetic and biochemical factors that determine the trajectory of recovery or progression of ILD. Data will be obtained through linkage to the Post-Hospitalisation COVID platform study and community studies. Additional substudies will conduct deep phenotyping. The Xenon MRI investigation of Alveolar dysfunction Substudy will conduct longitudinal xenon alveolar gas transfer and proton perfusion MRI. The POST COVID-19 interstitial lung DiseasE substudy will conduct clinically indicated bronchoalveolar lavage with matched whole blood sampling. Assessments include exploratory single cell RNA and lung microbiomics analysis, gene expression and epigenetic assessment. ETHICS AND DISSEMINATION: All contributing studies have been granted appropriate ethical approvals. Results from this study will be disseminated through peer-reviewed journals. CONCLUSION: This study will ensure the extent and consequences of LC-ILD are established and enable strategies to mitigate progression of LC-ILD.


Subject(s)
COVID-19/complications , Lung Diseases, Interstitial , Humans , Longitudinal Studies , Lung Diseases, Interstitial/epidemiology , Observational Studies as Topic , Pandemics , Prospective Studies , United Kingdom/epidemiology , Post-Acute COVID-19 Syndrome
3.
Thorax ; 76(7): 696-703, 2021 07.
Article in English | MEDLINE | ID: covidwho-1127610

ABSTRACT

INTRODUCTION: Risk factors of adverse outcomes in COVID-19 are defined but stratification of mortality using non-laboratory measured scores, particularly at the time of prehospital SARS-CoV-2 testing, is lacking. METHODS: Multivariate regression with bootstrapping was used to identify independent mortality predictors in patients admitted to an acute hospital with a confirmed diagnosis of COVID-19. Predictions were externally validated in a large random sample of the ISARIC cohort (N=14 231) and a smaller cohort from Aintree (N=290). RESULTS: 983 patients (median age 70, IQR 53-83; in-hospital mortality 29.9%) were recruited over an 11-week study period. Through sequential modelling, a five-predictor score termed SOARS (SpO2, Obesity, Age, Respiratory rate, Stroke history) was developed to correlate COVID-19 severity across low, moderate and high strata of mortality risk. The score discriminated well for in-hospital death, with area under the receiver operating characteristic values of 0.82, 0.80 and 0.74 in the derivation, Aintree and ISARIC validation cohorts, respectively. Its predictive accuracy (calibration) in both external cohorts was consistently higher in patients with milder disease (SOARS 0-1), the same individuals who could be identified for safe outpatient monitoring. Prediction of a non-fatal outcome in this group was accompanied by high score sensitivity (99.2%) and negative predictive value (95.9%). CONCLUSION: The SOARS score uses constitutive and readily assessed individual characteristics to predict the risk of COVID-19 death. Deployment of the score could potentially inform clinical triage in preadmission settings where expedient and reliable decision-making is key. The resurgence of SARS-CoV-2 transmission provides an opportunity to further validate and update its performance.


Subject(s)
COVID-19/mortality , Hospital Mortality , Hospitalization/statistics & numerical data , Monitoring, Ambulatory/statistics & numerical data , Pneumonia, Viral/mortality , Aged , Aged, 80 and over , Decision Making , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , Predictive Value of Tests , Prognosis , Risk Factors , SARS-CoV-2 , Severity of Illness Index
5.
Thorax ; 75(11): 1009-1016, 2020 11.
Article in English | MEDLINE | ID: covidwho-729414

ABSTRACT

The COVID-19 pandemic has led to an unprecedented surge in hospitalised patients with viral pneumonia. The most severely affected patients are older men, individuals of black and Asian minority ethnicity and those with comorbidities. COVID-19 is also associated with an increased risk of hypercoagulability and venous thromboembolism. The overwhelming majority of patients admitted to hospital have respiratory failure and while most are managed on general wards, a sizeable proportion require intensive care support. The long-term complications of COVID-19 pneumonia are starting to emerge but data from previous coronavirus outbreaks such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) suggest that some patients will experience long-term respiratory complications of the infection. With the pattern of thoracic imaging abnormalities and growing clinical experience, it is envisaged that interstitial lung disease and pulmonary vascular disease are likely to be the most important respiratory complications. There is a need for a unified pathway for the respiratory follow-up of patients with COVID-19 balancing the delivery of high-quality clinical care with stretched National Health Service (NHS) resources. In this guidance document, we provide a suggested structure for the respiratory follow-up of patients with clinicoradiological confirmation of COVID-19 pneumonia. We define two separate algorithms integrating disease severity, likelihood of long-term respiratory complications and functional capacity on discharge. To mitigate NHS pressures, virtual solutions have been embedded within the pathway as has safety netting of patients whose clinical trajectory deviates from the pathway. For all patients, we suggest a holistic package of care to address breathlessness, anxiety, oxygen requirement, palliative care and rehabilitation.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Coronavirus Infections/therapy , Lung Diseases/therapy , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Respiration Disorders/therapy , Algorithms , COVID-19 , Coronavirus Infections/diagnosis , Humans , Lung Diseases/diagnosis , Lung Diseases/virology , Pandemics , Pneumonia, Viral/diagnosis , Respiration Disorders/diagnosis , Respiration Disorders/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL